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ABSTRACT  

This paper sought to determine the effects of 

welding parameters (current, voltage, welding 

speed and plate thickness) on the residual stresses 

induced on mild steel plate weldments obtained 

using Shielded Metal Arc Welding (SMAW) 

process. Taguchi method and intelligent modelling 

techniques (artificial neural networks and extreme 

learning machine) were used to analyze the 

experimental results obtained. In designing the 

experimental runs for this research, Taguchi design 

of experiment which consists of four controllable 

parameters at 3-levels of design for which we 

chose the L9(3
4
) orthogonal array was used. Signal- 

to- noise ratio (S/N) was computed employing the 

smaller-the-better criterion for residual stress 

response using Minitab 17 Software and ANOVA 

was used to validate the results at 95% confidence 

level.  The ANN and ELM model simulations were 

carried out in the MATLAB 2018a environment at 

three different hidden neural nodes of 10, 20 and 

30 neurons for the thirty (30) experimental runs. 

ELM algorithm showed a very good model  fit at 

30 neural nodes with a coefficient of determination 

(R
2
) value of 99.86% which is far better than that 

of ANN algorithm and regression model which has 

R
2
 values of 96.52% and 92.61% respectively.  

Keywords: Shielded Metal Arc Welding, Residual 

Stress, Taguchi Method, ANN and ELM 

 

I. INTRODUCTION 
Welding is one of the most important 

technologies widely used in various engineering 

fields such as civil engineering, shipbuilding, 

pipeline fabrication, steel structural fabrication 

among others. It is a complicated process 

accompanied by shrinkage effects, phase 

transformations, intensification of corrosion and 

arising of residual stresses. The American Welding 

Society (2004) defined welding as a localized 

coalescence of metals or non-metals produced by 

either heating of the materials to a suitable 

temperature with or without the application of 

pressure, or by the application of pressure alone 

with or without the use of a filler material.  It is a 

process that involves localized heat generation 

from a moving heat source. The welded structures 

are heated rapidly up to the melting temperature, 

and followed by rapid cooling which cause’s 

micro-structural and property alteration. Arc 

welding processes use a welding power supply to 

create and maintain an electric arc between an 

electrode and the base material to melt metals at the 

welding point.  

Many distinct factors influence the 

strength of welds and the material around them, 

including the welding method, the amount and 

concentration of energy input, the weldability of 

the base material, filler material, and flux material, 

the design of the joint, and the interactions between 

all these factors. To test the quality of a weld, 

either destructive or nondestructive testing methods 

are commonly used to verify that welds are free of 

defects, have acceptable levels of residual stresses 

and distortion, and have acceptable heat-affected 

zone (HAZ) properties. 

Withers and Bhadeshia (2001) identify 

residual stress as the stress that remain within a 

material or body after manufacture and material 

processing in the absence of external forces or 

thermal gradients. Welding is one of the most 

significant causes of residual stresses and typically 

produces large tensile stresses in the weld, 

balanced by lower compressive residual stresses 

elsewhere in the component. Tensile residual 

stresses may reduce the performance or cause 

failure of manufactured products. They may 

increase the rate of damage by fatigue, creep or 

https://en.wikipedia.org/wiki/Welding_power_supply
https://en.wikipedia.org/wiki/Weldability
https://en.wikipedia.org/wiki/Destructive_testing
https://en.wikipedia.org/wiki/Nondestructive_testing
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environmental degradation. They may reduce the 

load carrying capacity of a component by 

contributing to failure by brittle fracture, or cause 

other forms of damage such as shape change or 

crazing (Bate, Green and Buttle, 1997; Masubichi, 

1980).  

Since residual stresses can affect structural 

behaviour, it is important to predict and model the 

residual stresses under different scenarios. 

Selection of appropriate welding parameters 

(current, voltage and welding speed) for a given 

material is essential in obtaining quality weld. 

The principal material used in this 

research was AISI 1018 mild steel plate. Mild steel 

is especially desirable for construction due to its 

weldability and machinability. AISI 1018 mild 

steel has excellent weldability, produces a uniform 

and harder case and it is considered the best steel 

for carburized parts (Jain, 2013). For each 

weldment, two plates of dimension 

300×120×10mm, 300x120x8mm, and 

300x120x6mm in each case were cut and welded to 

make a weld specimen plate of 300×240×10mm, 

300×240×8mm and 300×240×6mm respectively 

with a 300 mm weld length. Prior to welding, the 

plates were cleaned from water, dust and oil to 

enable proper deposition of electrodes. The 60
o
 

singe V-groove butt joint was used employing 

symmetric welding sequence and the plates were 

tack-welded at both ends in order to eliminate 

distortion during welding. All necessary 

precautions were taken to eliminate welding 

defects. 

 

 
Figure 1: Shielded metal arc welding process 

1. Coating flow   2. Rod    3. Shielding gas   4. Fusion    5. Base metal   6. Weld metal   7. Solidified slag 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Plate set-up prior to welding 

 

Experimental Design (Taguchi Method) 

The modern day approach to find the 

optimal output over a set of given inputs can be 

easily carried out by the use of Taguchi method 

rather than using any other conventional method.  

The Taguchi method emphasizes the selection of 

the most optimal solution over the set of given 

inputs with a reduced cost and increased quality. 

The optimal solution so obtained is least affected 

by any outside disturbances like the noise or any 

other environmental conditions (Rao et al., 2008). 

Okafor, Ihueze and Nwigbo (2013) viewed Taguchi 

robust design as a method of designing experiments 

in order to investigate how different parameters 

affect the mean and variance of a process 

performance characteristic that define how well the 

process is functioning.   

https://en.wikipedia.org/wiki/File:SMAW_area_diagram.svg
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The Taguchi method for design of experiment 

emphasizes the use of loss function, which is the 

deviation from the desired value of the quality 

characteristic. Based on this loss function, the 

Signal-to-Noise (S/N) ratio for each experimental 

run is evaluated and accordingly the optimal results 

are derived. S/N ratio is based upon the smaller- 

the- better criterion for residual stress which is 

given as:  

S

N
 =  −10log

1

n
  yi

2                              (1) 

Where n = number of measurements,  

yi = response value for each measurement. 

Equally spaced three levels within the 

operating range of the process parameters were 

selected as presented in table 1. Based on Taguchi 

method, an L9 (3
4
) Orthogonal Array (OA) which 

has nine different experiments was conducted and 

the result is shown in table 3. 

 

Table 1: Process parameters, Codes, and Level values 

 

Process Parameter 

 

Code 

                              Levels 

1 2 3 

 

Welding Current (A)  

 

I 

 

100 

 

130 

 

160 

 

Welding Voltage (V) 

 

V 

 

24 

 

28 

 

32 

 

Welding Speed (mm/min) 

 

S 

 

90 

 

120 

 

150 

 

Plate Thickness (mm) 

 

t 

 

6 

 

8 

 

10 

 

Residual Stress Measurement 
X-ray diffraction (XRD) is a well-

established, non-destructive method for the 

determination of residual stress in polycrystalline 

materials. 75% of companies and academics prefer 

to use XRD method in measuring residual stresses 

because the method is fast, can be repeatable, 

harmless to the specimen, and can control the 

specimen quality (Mazzolani, 2005). Residual 

stress induces small changes in the crystal lattice 

spacing of a material, which can be revealed by 

XRD with a very high sensitivity. From this, the 

lattice spacing in different directions and the 

related elastic strain can be determined. X-Ray 

Diffraction (XRD) was carried out on each of the 

samples in order to calculate the residual stress 

induced during welding. The ψ angles were tilted in 

steps of 9° in the range of 0° to 45°. The residual 

stress was estimated using the peak shift at ψ 

angles and d-spacing relationship of (211) plane. 

The Young modulus (E) and Poisson’s ratio (ν ) of 

mild steel were taken as 210 GPa and 0.290 

respectively in order to estimate the residual stress 

values. The residual stress (σ) was calculated by 

using equations (2) and (3) as derived by Cullity 

and Stock (2001). 

ε =  
d − do

do

                                                                (2) 

 

σ

=
E

1 + ν
 X 

1

Sin2ψ
    X ε                                          (3) 

Where do is the strain free inter planner 

spacing, ε is the calculated strain and angle ψ is the 

angle between the surface normal and strain 

measurement direction. The change in inter planer 

space “d” due to residual stress was measured from 

XRD graphics as shown in figure 3 and tabulated in 

table 2. 
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Figure 3: XRD Graphics 

 

Table 2: Peak List 

Pos.[°2Th.]  Height [cts]  FWHMLeft[°2Th.]  d-spacing [Å]  Rel. Int. [%] 

     35.3346         115.99            0.4093                2.54024             2.83   

     38.7350         204.21            0.0768                2.02587             10.00   

     44.9595         215.44            0.2558                1.43563             17.43   

    49.8367         99.08             0.6140              2.50580             14.69   

    55.2773        213.18            0.1279              2.00286             12.00   

    63.0348        181.53            0.6140              1.47475             8.59   

    65.4184        249.20            0.6140              1.42667             11.79   

    67.2773        113.18            0.1279              2.00286             16.24   

    68.0348        161.53            0.6140              1.47475             18.59   

 

Experimental Results 

The experimental result of residual stress 

(Table 3) was analyzed using Taguchi robust 

design. Minitab17 software was used for the 

Taguchi analysis which yielded the regression 

model for predicting residual stress response. The 

response tables for signal-to-noise ratio and means 

(Table 4 and Table 5) for levels of each factor was 

obtained. The ranks based on delta statistics which 

compare the relative magnitude of effects were also 

analyzed. 

 

Table 3: Experimental Result of Residual Stress 

 

         

S/N 

                                 Input Variables   Response 

Current, I 

(A) 

Voltage, 

V (V) 

Welding Speed, S 

(mm/min) 

Plate Thickness, t 

(mm) 

Residual Stress 

(MPa) 

1 100 24 90 6 272.4 

2 100 28 120 8 186.6 

3 100 32 150 10 142.0 

4 130 24 120 10 265.4 

5 130 28 150 6 220.6 

6 130 32 90 8 318.5 

7 160 24 150 8 260.8 
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8 160 28 90 10 325.2 

9 160 32 120 6 312.8 

 

Taguchi Analysis of Results 

The experimental results were analyzed using Taguchi robust design and validated using ANOVA as a 

statistical tool. The results are shown in Tables 4 to 7. 

 

Table 4: Response Table for Signal to Noise Ratio 

   Welding  Plate 

 Current  Voltage Speed Thickness 

Level    (A)   (V) (mm/min) (mm) 

1 -45.32 -46.41 -48.21 -46.76 

2 -46.71 -46.44 -46.59 -46.57 

3 -47.95 -47.13 -45.18 -46.65 

Delta 2.63 0.72 3.02 0.19 

Rank 2 3 1 4 

 

Table 5: Response Table for Means 

   Welding  Plate 

 Current  Voltage Speed Thickness 

Level   (A)  (V) (mm/min) (mm) 

1 185.9 209.3 259.2 220.5 

2 219.6 215.8 216.6 216.5 

3 252.6 232.9 182.3 221.0 

Delta 66.7 23.7 76.9 4.4 

Rank 2 3 1 4 

 

Table 6: Analysis of Variance for SN Ratio 

Source  DF Seq SS Adj SS Adj Ms F P 

Current (A) 2 10.3592 10.3592 5.17961 1.82 0.015 

Voltage (V) 2 0.9839 0.9839 0.49197 0.01 0.584 

Welding Speed 

(mm/min) 

2 13.7403 13.7403 6.87015 2.62 0.325 

Plate 

Thickness(mm) 

2 0.0554 0.0554 0.02772 0.00 0.112 

Residual Error 2 1.0000     

Total  10           26.1389 

S = 0.3456                R
2 
= 92.6%      R

2
 (Adj) = 42.4% 

 

Table 7: Analysis of Variance for Means 

Source  DF Seq SS Adj SS Adj Ms F P 

Current (A) 2 6673.6 6673.6 3336.81 35.05 0.235 

Voltage (V) 2 895.6 895.6 447.82 8.62 0.015 

Welding Speed 

(mm/min) 

2 8904.3 8904.3 4452.15 21.40 0.522 

Plate 

Thickness(mm) 

2 35.8 35.8 17.92 2.46 0.204 

Residual Error 2 0.0     

Total  10           16509.4 

S = 45.6486                R
2 

= 90.2%      R
2
 (Adj) = 40.4% 

 

The estimated model for S/N ratio is obtained as: 

y = −46.6602 + 1.3376I − 0.0487I + 0.2496V + 0.2117V − 1.5457S + 0.0671S − 0.1025t
+ 0.0882t                                                                                                                      (4) 
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The estimated model for Means is obtained as: 

y = 219.344 − 33.478I + 0.256I − 10.078V − 3.511V + 39.822S − 2.744S + 1.189t
− 2.811t                                                                                                                    (5) 
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Figure 3: Main Effects Plot for SN Ratio 
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Figure 4: Main Effects Plot for Means 

 

The response tables for signal-to-noise 

ratio and means for levels of each factor are shown 

in table 4 and table 5. The ranks in these response 

tables indicate that welding speed has the greatest 

influence on residual stress response of mild steel 

plate weldments obtained using shielded metal arc 

welding process. This was followed by welding 

current, welding voltage and plate thickness 

respectively.  

In the analysis of variance, the coefficient 

of determination (R
2
) at this point was 92.6% and 

90.2% for S/N ratio and mean respectively. This 

indicates that the linear models of S/N ratio and 

mean were able to show 92.6% and 90.2% of the 

variation observed in the dependent variable as 

captured by the explanatory variables in the linear 

regression model. These models were completely 

linear; they did not show interaction effects of the 

variables.  

The main effects plots for S/N ratio and 

that of means (Figure 3 and 4) respectively indicate 

the same outcome of optimum. They show that the 

optimal residual stress for shielded metal arc 

welding was achieved at a welding current of 
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100A, welding voltage of 32V, welding speed of   

150mm/min and plate thickness of 10mm. 

The main effect plots, ranks of factors, 

values of sum of squares from ANOVA tables are 

all in conformity with coefficients of the linear 

models produced for this response. The absolute 

value of these coefficients shows the importance of 

each factor to the response; hence, welding speed 

remains the most significant factor. Based on 

equations (4) and (5), the optimal residual stress 

was obtained as 158.5MPa and 165MPa for S/N 

ratio and for means respectively. 

 

ANN and ELM Modelling 

The machine learning algorithms applied 

in this research are artificial neural networks 

(ANN) and extreme learning machine (ELM) 

which are both feed-forward neural networks. The 

ANN and ELM model simulations were carried out 

in MATLAB 2018a environment at three different 

hidden neural nodes of 10, 20 and 30 neurons for 

the thirty (30) experimental runs. The optimum 

ELM model was determined using the Sigmiod 

hidden transfer function while the optimum ANN 

model was determined using Levenberg-Marquart 

back propagation training algorithm. 

 

The original dataset was split into training, cross-

validation and test data sets, where; 

 70% of the exemplars were presented to the 

network for training. 

 15% of the exemplars concurrent with the 

training set were used for cross validation. 

 15% of the exemplars were used for testing the 

trained network. 

The following termination criteria were used to 

determine convergence of the training 

algorithm: 

 Number of runs before termination. 

 Maximum number of runs. 

 Non-improvement of cross-validation error 

with training. 

 Increase in the cross-validation error with 

training. 

Furthermore, a performance comparison in terms of 

estimation capacity was conducted between the two 

models to show their potential in predicting the 

response.  

 

Score Metrics for ANN and ELM 

To validate and compare the results from 

ANN and ELM models, the following score 

metrics were statistically evaluated. They are; 

Mean Square Error (MSE), Root Mean Square 

Error (RMSE), Mean Absolute Deviation (MAD), 

Mean Absolute Percentage Error (MAPE), 

Tracking Signal (TS) (Narasimhan, Mcleavey, and 

Billington, 1995; Vonderembse and White, 1991) 

and Coefficient of Determination (R
2
) (Thorstom, 

2017). These score metrics are expressed as 

follows; 

MSE =
1

N
  RPi − RTi 

2

n

i=1

                                                                (6) 

                       RMSE =  
1

N
  RPi − RTi 

2   n
i=1                                              (7)    

                            MAD =
1

N
   RTi − RPi   

n
i=i                                                    (8)  

                              MAPE =
   RT−RP  RT  ∗100

N
                                                       (9)    

                                 TS =
 

RTi −RPi
RTi

1

N
   RTi −RPi   

n
i=1

                                                                           (10)        

R2 = 1 −
  RTi − RPi  

2
n

samples −1

i=0

  RTi − R  2
nsamples −1

i=0

                                                    (11) 

Where RPi and RTi are the predicted and the targeted responses. 

 

Table 8: Residual Stress Prediction Results 

Experimental ANN ELM 

 10 Nodes 20 Nodes 30 Nodes 10 Nodes 20 Nodes 30 Nodes 

265.4 268.54438 312.07867 288.17493 285.73168 272.70961 304.23639 

325.2 362.13423 329.50677 361.6037 355.69669 331.12584 343.20903 

318.5 376.71613 357.78855 351.39492 351.1324 327.94212 348.43963 

220.6 234.71664 260.39327 225.17228 231.50884 231.38103 239.39717 

312.8 334.23718 360.3945 334.57749 316.51783 319.91515 339.39047 
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Prediction Comparison of Residual Stress at 10, 20 and 30 Nodes 

 

 
Figure 4: ANN and ELM Prediction Comparison of Residual Stress at 10, 20 and 30 Nodes 

 

Figure 4 shows the graphical 

representation of the predicted values of residual 

stress response at 10, 20 and 30 nodes for both 

ANN and ELM models. It can be observed from 

the graphs that at node 30, ELM was the same as 

the expected values at all the measured points. The 

advantages of the ELM over the classical ANN 

model are evident. For example, in accordance with 

the basic theory of ELM, randomly initiated hidden 

neurons are fixed, and they do not need iterative 

tuning process with free parameters or connections 

between hidden and output layer. Consequently, 

ELM is remarkably efficient to reach a global 

optimum, following universal approximation 

capability of single layer feed-forward network. 

With suitable activation functions, ELM can attain 

optimal generalization bounds of traditional feed 

forward neural networks in which all parameters 

are learned. This is a distinct advantage of the ELM 

model in terms of the efficiency and generalization 

performance over traditional learning algorithm 

such as ANN as revealed in this research. 
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ANN and ELM Scatter Plots for Residual Stress at 10, 20 and 30 Nodes 

 

 
Figure 5: ANN and ELM Scatter Plots for Residual Stress Response at 10, 20 and 30 Nodes 

 

Discussion of ANN and ELM Scatter Plots 

The scatter plots of the predicted values at 

10, 20 and 30 nodes are shown in figure 4. From 

the scatter plots, the highest degree of clusters at 

the linear regression line is clearly observed on the 

ELM model. This was specifically pronounced for 

the ELM model at 30 neural nodes. This particular 

statistical correlation of targeted and predicted 

responses at optimum of 30 nodes has a coefficient 

of determination (R
2
) value of 99.2% for ELM, 

96.5% for ANN and 92.6% for Taguchi robust 

design. This result shows that ELM has better 

prediction capability compared to ANN. 

The performance metrics for residual stress at 10, 

20 and 30 nodes as obtained from equations (6) to 

(11) is shown in table 9. 

Table 9: Performance Metrics for Residual Stress at 10, 20 and 30 Nodes 
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Metrics ANN ELM 

 10 Nodes 20 Nodes 30 Nodes 10 Nodes 20 Nodes 30 Nodes 

MAD 143.28414 16.89536 19.30703 11.78426 5.02351 10.46137 

MAPE 127.17983 16.31319 15.77781 9.84966 5.07485 10.18027 

TS -5 -5 -5 -5 -5 -5 

R2 0.37293 0.64721 0.95199 0.93938 0.97432 0.62047 

Time(s) 0.15784 0.08985 1.00246 0.00285 0.00089 0.00925 

MSE 20954.24634 451.47165 483.50695 188.86352 50.02109 289.70185 

RMSE 144.75582 21.24786 21.98879 13.74276 7.07256 17.02063 

 

 

 
Figure 6: ANN and ELM Performance Metrics for Residual Stress at 10, 20 and 30 Nodes 
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From table 9, it is observed that ELM 

algorithm was simply magnificent in its training 

time which was much faster than that of ANN for 

all neural nodes. At 30 neural nodes, the training 

time for ELM was 0.009 Seconds while that of 

ANN was 1.00 Seconds. 

The MSE and MAD are statistical 

approaches used to verify the prediction error. It 

was found that the MSE, RMSE, MAD and MAPE 

all improved as the output neuron value increased 

and fully converged at 30 neural nodes. This means 

that the higher the number of output neurons, the 

better the response. Comparing the two models, 

ELM attained full convergence at 20 output 

neurons while ANN was yet to attain its optimal 

response which was found to be at 30 nodes. The 

tracking signal (TS) helps to determine if the model 

is an accurate representation of the real-world 

variable. It is expected to be theoretically equal to 

zero. Both ELM and ANN models have tracking 

signals recorded at sub-zero for all the nodes. This 

indicates that the models have good tracking signal; 

hence the models are good. 

 

II. CONCLUSIONS 
At the end of this research, the following 

conclusions are made: 

1. Based on analysis of the experimental results 

using Taguchi method, ANN and ELM algorithms, 

it can be concluded that all the methods gave 

reliable results.  

2. Taguchi method can be successfully applied to 

analyze and optimize the parameters which 

influence the residual stresses on the weldments 

whereas ANN and ELM models can be used for 

predicting the response.  

3. By comparing the experimental results with 

those obtained using ANN and ELM methods, it 

can be concluded that the ELM method is more 

efficient in prediction. 
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